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THEORY OF WING-BODY DRAG AT SUPERSONIC SPEEDS'

By Rosert T. JoNES

SUMMARY

The relation of Whitcomb’s “area rule” to the linear formulas
for wave drag at slightly supersonic speeds is discussed. By
adopting an approximate relation between the source strength
and the geometry of a wing-body combination, the wave-drag
theory is expressed in terms involvigg the areas intercepted by
oblique planes or Mach planes. The resulting formulas are
checked by comparison with the drag measurements obiained in
wind-tunnel experiments and in experiments with falling models
in free air. Finally, a theory for determining wing-body
shapes of minimum drag at supersonic Mach numbers is
discussed and some preliminary experiments are reported.

DISCUSSION

At subsonic speeds the pressure drag arising from the thick-
ness of the body or wings is negligible so long as the shapes are
sufficiently well streamlined to avoid flow separation. In
that range there exists no possibility of either favorable or
adverse interference on the pressure distributions themselves.
If one body is 8o placed as to receive a drag from the pressure
field of another then the second body is sure to receive a
corresponding increment of thrust from the first.

At supersonic speeds this tolerance which was permitted
the designer disappears, and the drag becomes sensitive to
the shape and arrangement of the bodies. To be sure, the
primary factor here is the thickness ratio, but nevertheless
there exist arrangements in which a large cancellation of drag
occurs, Examples of the latter are the sweptback wing and
the Busemann biplane.

Recently R. T. Whitcomb (ref. 1) has shown how the drag
at transonic speeds may be reduced to a surprising extent by
simply cutting out a portion of the fuselage to compensate
for the area blocked by the wing. The purpose of the present
paper is to discuss some of the theoretical aspects of this
method of drag reduction and to show how the basic idea
may be extended to higher speeds in the supersonic range.

‘Whitcomb’s deduction of the “area rule” was based on
considerations -of stream-tube area and the phenomenon of
“choking”’—which follow from one-dimensional-flow theory.
Each individual stream tube of a three-dimensional-flow field
must obey the law of one-dimensional flow. While we can-
not actually determine the three-dimensional field on this
basis alone, nevertheless it provides a good starting point for
our thinking. The results demonstrate again the effective-
ness of basic and simple considerations.

1 Buperzedes NACA RM AB3HI8a by Robert T. Jones, 1953,

While one-dimensional-flow theory thus provides a clue
to the area rule, the necessary principle appears more spe-
cifically in the three-dimensional-flow theory. Thus, the
formulas for wave drag given by linear theory, if followed
toward the limit as M approaches 1.0 (from above), show
that the wave drag of a system of wings and bodies depends
solely on the longitudinal area distribution of the system as a
whole. This was first noted by W. D. Hayes in his 1946
thesis (ref. 2). However, because of the limitations of the
theory at transonic speeds, this result was not thought to be of
practical significance. Later G. N. Ward (ref. 3), E. W.
Graham (ref. 4), and others, restricting themselves to very
narrow shapes, expressed the wave drag in terms of the
longitudinal area distribution for Mach numbers above
1.0, where the linear theory has a better justification.

It should be noted, however, that both of the problems
cited are limiting cases of the more general problem of super-
sonic drag and it should be borne in mind that only in certain
cases has it been possible to reduce the general theoretical
formulas to the form of an area rule. It can be shown that
the flow field about any system of bodies may be created by a
certain distribution of sources and sinks over the surfaces
of the bodies. Hayes’ formula and the formulas given in
reference 5 relate the drag of such a system to the distribution
of these singularities. To obtain a formula for the wave
drag in terms of area distributions we have to adopt a simpli-
fied relation between the source strength and the geometry
of the bodies, namely, that the source strength is proportional
to the normal component of the stream velocity at the body
surtace. There are examples (e. g., Busemann biplanes and
ducted bodies) for which this assumption is not valid. If,
on the other hand, we limit ourselves to thin symmetrical
wings mounted on vertically symmetrical fuselages, there are
indications that a good estimate of the wave drag at super-
sonic speeds can be obtained on the basis of the simplified
relation assumed.

Following Hayes’ method of calculation, we find that at
M=1.0 the expression for the wave drag of a system of wings
and bodies reduces to Kérmén’s well-known formula (ref. 6)
for the wave drag of a slender body of revolution, that is,

2
DM_.1=—B‘1K f“" . S”(@)8” (21) log |t—,|dx dx,
T J =%, J 2,
Here S(X) represents the total cross-sectional ares inter-
cepted by a plane perpendicular to the stream at the station
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(1) Equivalent body of revolution

(2) Gradient of area
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(3) Fourier series
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{4) Wave drag: (#/—10)
2
=P 502,

T'iaure 1.—8teps in the caleulation of wave drag for A{f—1.0.

2 (see fig. 1) and S’/(z) is the second derivative of S with
respect to z. TFollowing Sears (ref. 7) we may expand
S’(z) in & Fourier series and obtain in this way a formula for
the drag which is completely analogous to the well-known
formula for the induced drag of a wing in terms of its span-
wise load distribution. Thus, if we write
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T=2,C08 ¢
and

S’ (x)=ZA,sin ng

we obtain for the wave resistance

D=%" Znd,?

Of all the terms of the series, each contributes to the drag
but only 4, and 4; contribute to the volume or the base
area of the system. Thus, to achieve a small drag with ¢
given base area, or with a given over-all volume within the
given length, the higher harmonics in the curve S’(z) shoulc
be suppressed. This formula enables us.to characterize the
smoothness of a given shape in a quantitative fashion.

To extend these considerations to supersonic speeds we
have to consider a series of cross sections of the system made
not by planes perpendicular to the stream, but by planes in
clined at the Mach angle, or “Mach planes.” By means of

-~

Ficore 2.—Area distribution given by intersections of Mach planes.

a set of parallel Mach planes (see fig. 2) we construct an
“equivalent body of revolution,” using the intercepted
areas, and compute the drag by von Kirmsdn’s formula.
The theoretical basis of this step'is the fact that the complete
three-dimensional disturbance field may be constructed by
the superposition of elementary one-dimensional disturbances
in the form of plane waves (ref. 8). It is evident that the
set of parallel Mach planes may be placed at various angles
around the z axis. In constructing the flow field it is neces-
sary to superimpose disturbances at all of these angles and,
in computing the drag, to consider the drags of all the equiv-
alent bodies of revolution. The final value of the drag is
simply the average of the values obtained through a complete
rotation of the Mach planes.

In order to make these statements more specific, we may
write the equation of one such Mach plane as follows:

X=z—y’cos §—2’'sin 6§

where y'=+M?*—1 y, 2'=yM2—1 z, and 6 is the angle of
rotation of the Mach plane. By assigning different values
to X while keeping 6 constant, we obtain a series of parallel
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planes at the same angle 6 around the z axis. By assigning
different values to 6 while keeping X a constant, we obtain
a set of planes enveloping that Mach cone whose apex lies
at the point z=X.

Selecting a value of 8, we cut through the wing-body
system with a series of planes corresponding to different
values of X. The total intercepted area in each plane is
then equated to the area intercepted by this plane passing
through the equivalent body of revolution. If we denote
the aren intercepted obliquely by s(X,6), then the area
S(X,0) is defined by

S=ssin p

where p is the Mach angle (i. e., sin p=1/M). Thus, S is
the area intercepted by normal planes passing through the
equivalent body of revolution on the assumption that this
body is slender. Again, we write

S’(X,0)=a—3{ S(X,0)=2A, sin n¢
with )

cos ¢=X-‘£ﬂ
Here, however, both the length 2X, and the shape of the
equivalent body vary with the angle 8. The drag of each
equivalent body of revolution, which we may denote by
D’ (6) is then determined by applying Seacs’ formula:
2
D'(0)=’r—"81—7— Znd?

The total drag of the wing-body system is the average of all
these values between §=0 and 6=2w, that is,

1 2r ,
D=y fo D'(0)ds

In general, the coefficients A4, will be functions of the angle
of projection §. However, calculation shows that the first
two coefficients .4; and A4, are again related in a simple way
to the base area and the volume ». Thus,

None of the higher coefficients contribute to the base area
or volume, but they invariably contribute to the drag.

The rules for obtaining a low wave drag now reduce to
the rule that each of the equivalent bodies obtained by the
oblique projections should be as smooth and slender as
possible, the “smoothness” again being related to an absence
of higher harmonics in the series expression for S’(X). Thus
in the case of given length and volume the series should
contain only the term 4;sin 2¢ (see fig. 3). It should be
noted that in this theory, the equivalent bodies of revolution
do not have a physical significance. The concept is simply
an aid in visualizing the magnitude of the drag of the com-
plete system.

435876—57——49
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{Sears-Haack body)

Fraure 3.—Optimum area distribution for given length and volume.

To check the agreement between these theoretical formulas
for the wave drag and experimental values, we have com-
pared our calculations with the results of tests made by
dropping models from a high altitude. This comparison
was made by George H. Holdaway of Ames Laboratory, who
supplied the accompanying illustration (fig. 4). In some of
these cases it was found necessary to retain more than 20
terms of the Fourier series in order to obtain a convergent
expression for the drag.

Considering the variety of the shapes represented here, the
agreement is certainly as good as we ought to expect from
our linear simplifications. The agreement is naturally better
in those interesting cases in which the drag is small.
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Fiaues 4—Compurison of theory with resulfs of Ames Laboratory
drop tests.

Figure 5 shows an analysis of one of Whitcomb’s experi-
ments. The linear theory, of course, shows the transonic
drag rise simply as a step at M=1.0. We may expect such
a variation to be approached more closely as the thickness
vanishes. To represent actual values here a nonlinear
theory would be needed. For many purposes it will be suffi-
cient to estimate roughly the width of the transonic zone by
considerations such as those given in reference 9. In the
present case it will be noted that agreement with the linear
theory is reached at Mach numbers above about 1.08, and
the linear theory clearly shows the effect of the modification.

For further theoretical studies of wing-body drag, shapes
have been selected which are especially simple analytically,
namely, the Sears-Haack body and biconvex wings of elliptic
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plan form, having aspect ratios of 2.54 and 0.635. Figure 6
shows the effect of wing proportions on the variation
of wave drag with Mach number, both with and without the
Whitcomb modification. In each case the modification has
the effect of reducing the wave drag to that of the body
alone 2t 4/=1.0. In the case of the low-aspect-ratio wing
this drag reduction remeins effective over a considerable
range of higher Mach numbers. With the higher aspect
ratio, however, the drag increases sharply at higher speeds,
so that at A/=1.6 the modification nearly doubles the wave
drag. :

The rapid increase of drag in the case of the high-aspect-
ratio wing is, of course, the result of the relatively abrupt
curvatures introduced into the fuselage lines by the cutout.
Such abrupt cutouts are necessarily associated with wings
having small fore and aft dimensions, that is, unswept wings
of high aspect ratio.

These considerations led to the problem of determining a
fuselage shape for such wings that is better adapted to the
higher Mach numbers. The first step in this direction is,
obviously, simply to lengthen the region of the cutout—thus
avoiding the rapid increase of drag with Mach number. The |
problem of actually determining the best shape for the fuse-
lage cutout at any specified Mach number has been under-
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F1GURE 5.—Comparison of Whitcomb’s experiments with theory.
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F1étre 7.—Design of fuselage modification for specified Mach number.

taken by Harvard Lomax and Max. A. Heasglet at Ames
Laboratory (ref. 10). Their solution of this problem provides
a definite method for determining the distribution of sources
and sinks along the fuselage axis that will achieve a minimum
value of the drag for a given wing shape at any specified
Mach number. Furthermore, by admitting singularities of
higher order—quadrupoles, etc., which would distort the
rotational symmetry of the fuselage—they have been able to
show that the wave drag of a wing-body system can be
reduced, in principle at least, to & minimum value associated
with the given overall length and volume of the system, that
is, to the value for a simple Sears-Haack body containing the
whole volume of the system.?

By adopting our simplified relation between the source
strength and the body shape, we may describe the result of
this theory by a relatively simple concept, which is illustrated
in figure 7. For modifications of the first type, the problem
is to determine the area ASy to be removed from the fuselage
to best compensate for a given wing. (See fig. 7.) Selecting
a station along the fuselage axis and a Mach plane passing
through this station, we revolve this plane around the axis,
measuring at each angle ¢ the normal projection, or frontal
projection, of the area intercepted where the plane cuts
through the wing. After plotting these areas against ¢ and
integrating between 0 and 2w, we obtain ASy as the average
of the values of S,. At any Mach number the total volume
to be subtracted from the fuselage is equal to the wing vol-
ume. At higher Mach numbers, since the modification ex-
tends over a greater length, the area subtracted at individual
cross sections becomes less.

Figure 8 shows the calculated result of designing the
fuselage cutout for a specific Mach number, 1.2 in this case.
The lower curve is an envelope showing the minimum values
that can be achieved by such a radially symmetric cutout.

Figure 9 shows the magnitude of the gain that is theo-
retically possible by higher order modifications of the fuselago
shape. There are three lower bounds here, and the symbols
ao, s, etc., attached to them refer to a representation of the
fuselage shape by singularities of increasingly higher order.

{
L ] ] 1
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Fiaure 6.—Effect of Whitcomb modification on calculated wave drag.

3 This value 18, of course, not an absolute minimum for a glven volume since, as shown by
Ferrari, the wave drag of a body can be reduced to zero by special volume distributlons (seo
ref. 11).
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The curve labeled aq is that given on the previous figure and
shows the maximum effect of radially symmetric modifica-
tions. While the fuselage shapes for the other curves have
not actually been determined, the curve labeled ao+a; may
be thought of as referring to a cutout with an additional
elliptic modification.

In order to test this theory of determining optimum body
shapes we have started a program using models similar to
those investigated theoretically. Several of these models
have already been tested in the Ames 2- by 2-foot wind
tunnel, with results that agreé quite well with calculations
made on the assumptions given earlier. Shown in figure 10
are the experimental and theoretical curves. It is evident
that the calculated differences are all reproduced approxi-
mately in the experimental values.
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Fieure 8.—Effect of modification designed for a specified Mach
number.
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Fraore 10.—Drag of bodies with elliptic wings.

There are, of course, examples of wing-body systems which
would hardly benefit by any change in shape of the fuselage.
It is easy to decide whether a gain is possible, or worthwhile,
by comparing the actual wave drag of the system with that
of a Sears-Haack body containing the over-all volume of the
system. In the case of 63° the wing-body combination, which
has been described in several previous reports, this compari-
son yields 0.0045 as a lower bound for the wave-drag coeffi-
cient and 0.005 for the actual value. In such cases, for
which the wave drag is initially very low, further reduction
by reshaping the fuselage is not worthwhile.

It is clear from the foregoing, however, that appreciable
savings in drag cen be made in many cases by a suitable
shaping of the fuselage. Unswept wings of high aspect ratio
are benefited most and require the most careful consideration
of the fuselage shape.

These new developments illustrate, again, the fact that
the disturbance fields at transonic and supersonic speeds are
essentially three-dimensional phenomena. It was not long
ago that our ideas concerning the wing section—which had
their origin in the older incompressible flow theory—had to
be relinquished because of the predominating effects of the
wing plan form. Now we must learn how to design the
wing and the fuselage together.

AMES AERONAUTICAL LABORATORY
* NATIONAL ADvisory COMMITTEE FOR AERONAUTICS
Morrerr Fierp, Caurr., July 8, 1963



APPENDIX A

- SIMPLIFIED CALCULATION OF DRAG IN SPECIAL CASES

If special shapes such as the Sears-Haack body (ref. 7) and
the elliptic wing (ref. 8) are selected for exploratory studies,
then the calculation of drag can be greatly simplified.

The radius r of the Sea.rs-Haack body at any station X is

)

S/(X)=A4, sin 2¢

and the drag has & minimum value for the given volume and
length. The value of the drag is given by

(A1)
For this shape
(A2)

2
Cpmr 2 3 o ) (A3)
P yrg Lo
2 il
The elliptic wing has symmetrical biconvex sections, with
ordinates z given by
z 2y

where @ and b are the semiaxes. The area distribution for
overy angle of projection is similar to that of the Sears-Haack
body, but the projected length varies with the angle. The
wing thus yields a minimum value of the wave drag consistent
with a given volume and the elliptic plan form. The value

of this drag is:
Cp= D (Zm) Mi—1
14 VﬁS J-‘Ig_l_l_bg M_1+b (A5)

where S is the plan area of the wing.

By making use of the reversal theorem for drag we may
compute the wave drag of any body from the fictitious
pressure field obtained by superimposing the perturbation
velocities for forward and reversed motion (refs. 12 and 13).
This process leads to some interesting relations for the shapes
selected. Thus in the case of the Sears-Haack body it may
be shown that the combined pressure distribution p consists
of a uniform gradient of pressure over the whole interior R
of its “characteristic envelope” defined by the Mach cone
from the nose together with the reversed Mach cone from
the tail. (See fig. 11.)

By thinking of the characteristic region R as a region of
uniform horizontal buoyancy, and of the body b in terms of a
certain volume, »,, we see that the drag is simply the product

P,

Dy=w, = (A6)
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The existence of a constant pressure gradient makes the
computation of interference drag particularly simple for such
shapes, provided the interfering body lies entirely within
the characteristic region B. Thus the additional drag of an
airfoil ¢ placed within the double cone of the fuselage will be
given by

Dab=1’a D“—bb (A7)
Va
Now, by the mutual drag theorem (ref. 13) we have
Dyy=D, (AS)

or, “the drag of the fuselage caused by the presence of the
wing is equal to the drag of the wing caused by the presence
of the fuselage.”” In this way we obtain the general formula

(A9)

D(a+ b0)=Dy+ 2D+ D4

(b)

() Body of revolution.
(b) Elliptic wing.

Ficure 11.—Characteristic envelopes.
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and for the special shapes selected:

D(a+5)=Dy (1+2 :—:)+Dm (A10)

The effect of an indentation or cutout in the fuselage may
be calculated by introducing a second “body,” ¢, shorter

than the fuselage, and having a negative volume equal to the

volume subtracted by the indentation. In order to simplify
the situation as much as possible it will be assumed that the
wing lies entirely within the characteristic region of the
indentation, and furthermore that the latter may be repre-
sented by a “negative’” Sears-Haack body with volume equal
to that of the wing.

Sears-Haack body;
Negative volume Wing

D{a+c)= Dao+2Dac+Dec

2D,,c=2% v

\
\f\\ ;; ///

\ VR
W%

Negative volume; ve=—uy
D(a+c)=Dgq—Dee

Sears-Haack body

Fieure 12,—Simplified calculation of interference drag.

The calculation of drag in this case is illustrated in figure
12. Tor the airfoil and cutout we have

D(a+e0)=Du+2D,.+D,,
2D..=—2D,,
D(e+e)=Dgyu—D,.

but, since,
(A11)
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Now, the combination (¢-}¢) may be placed inside the charac-
teristic region of the body & without interference, since
ve~+v.=0. Hencs,

D(a+b+c)=DoutDyp—D,, (A12)
This formula yields the minimum drag for the shapes selected
under the assumption that vy, is fixed. In this case the
drag saving is equel to the drag of the indentation alone.
The negative Sears-Haack body is not the optimum shape
of the indentation ¢ for the elliptic wing, as shown by the
result of Heaslet and T.omax quoted earlier (ref. 10). Again,
however, in the case of the optimum shape for ¢, our previous
equation holds. However, the calculation of D, is more
complex in this case and its value is somewhat greater.
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